Delivery and optical imaging of luminescent and fluorescent reporter genes

Stefan Petkov

Electroporation

Application of an electrical field to cells in order to increase the *permeability* of the cell membrane, allowing the introduction of chemicals, drugs, or **DNA**.

CUY21EDIT II pulse generator

- In vivo and in vitro electroporation
- Patterns of electroporation pulses
 - → Square
 - \rightarrow Decaying
 - \rightarrow Change of polarity
- First constant current electroporator
 - \rightarrow The user can set desired current

Electrodes for skin electroporation

□ Multineedle array electrodes, BTX

□ 2-needle electrode array, BTX

Platinum-coated tweezers with plate electrodes, BEX

Tweezers with fork and a plate electrode, BEX

Immunization parameters

- Intradermal injection of 10 μg of reporter gene dissolved in 20 μl PBS
- Electroporation immediately after injection
 - \rightarrow 1 poration pulse of 400 V (0.05 ms)
 - \rightarrow 8 driving pulses of 70 V/100V
 - \rightarrow All pulses had a 10 ms duration with 20 ms gaps

The luciferase reporter gene

Luciferases

- → Firefly, Renilla/Gaussia, Bacterial
- \rightarrow Generate luminescent light (490 560 nm)
- \rightarrow Low immunogenicity

Modified from Keyaerts, M. (2012) Trends Mol. Med.

Luciferase in vivo transfection

Effect of pulse polarity on luciferase expression

Luminescence 1 day post injection

Anti-luciferase response

Issues with luminescence imaging

1. Poor deep-tissue detection due to spectral properties

2. Luciferase detection requires substrate (D-luciferin) presence

Near-infrared reporters | iRFP670

- \rightarrow Near-infrared optical window
 - Well-defined window for imaging 650-950 nm
 - High tissue penetration due to low scatter and absorbance
 - Reduced autofluorescence
- \rightarrow iRFP670
 - Uses bacterial phytochrome photoreceptors (BphP) as a template
 - Has the most red-shifted absorption spectrum among the phytochromes

Fluorescence in tissue

Excitation (a) and emission (b) of BphP-based fluorescent proteins.

Shcherbakova, D. M., & Verkhusha, V. V. (2013). Nature Methods.

iRFP670: a working compromise between signal and noise

Experimental plan (marmoset skin explants)

- 1. Administer ID injections of 10µg iRFP670
- 2. Electroporate injection site
- 3. Excise injection site and culture in growth medium for 72 hours
- 4. Monitor fluorescence levels in skin explants
- 5. Collect & analyze crawl out cells from the skin explants

Transfection efficiency is voltage-dependent

70V is optimal for multineedle EP and 100V rusults in slightly better transfection using a plate electrode.

Transfection in vivo (explants)

Effect of voltage on expression

70V EP results in slightly higher iRFP670 expression as compared to 100V.

Effect of pulse polarity on iRFP670 expression

Alternating polarity pulses result in slightly higher fluorescence.

Conclusion

It did not work!

10 µg is too little to provide reliable detection in explants*

* With the IVIS

iRFP670 protein detection (TriFoil)

Calibration of fluorescence signal InSyTe FLECT (TriFoil)

Results: iRFP670 plasmid injection

ASKA

trol zone

iRFP670 protein detection (IVIS)

Optimization of iRFP670 delivery

- 4 important parameters:
 - Electrodes
 - Multineedle
 - 2-needle
 - Plate
 - Plate-fork
 - Voltage
 - Polarity
 - Dose

iRFP670 expression depends on quality of electroporation

Saturation point 40 μ g or less. 20 μ g is already providing sufficient fluorescence for reliable detection. 20 μ g of iRFP670 plasmid injection translates into ~3 μ g protein 5 days after injection.

Longitudinal monitoring of fluorescence

The data confirms saturation at not more than 40 µg. Expression persists longer then 27 days.

Radiant Efficiency (p/sec/cm²/sr µW/cm²)

Color Scale Min = 8.00e7

Max = 2.00e8

Assessment of iRFP670 immunogenicity

- Mice were injected ID + EP
- 21 days later spleens were harvested
- Splenocytes were stimulated in vitro with iRFP670 protein

The protein does not induce a significant cellular/humoral immune response after 21 days!

Assessment of iRFP670 immunogenicity

- Mice were injected ID + EP
- 21 days later spleens were harvested
- *In silico* prediction of epitopes performed
- Specific peptides were synthesized and used for assessment of responses by ELISpot

Peptide stimulation confirmed the low immunogenicity of the reporter!

pVax1

MN

Optimization in human skin (50 µg iRFP670)

 I.00E+06
 Image: 24 hrs
 24 hrs

 I.00E+05
 Image: 1 hpi
 24 hpi
 48 hpi

 Detectable difference in fluorescence between vector and iRFP670 inoculated explants (MN electrode, Derma Vax)
 48 hrs
 48 hrs

1 hr

iRFP670

MN

Conclusions and current work

- iRFP670 is a promising candidate for both *in vivo* and *ex vivo* imaging of transfected tissue
- Evaluated of reporter expression (long- and short term experiments)
 - a. Corroborate expression in crawl-out cells (done in mice)
 - b. Study the type of cell populations among crawl-outs
- a. Immunogenicity and toxicity are low in vivo
- b. Investigate the relationship between expression in explants and cell inflammation

Acknowledgements

Britta Wahren Maria Isaguliants Karin Lore Athina Kilpeläinen

Anastasia Latanova

Elizaveta Starodubova

Juris Jansons

